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Abstract. We present a geometric and dynamical approach to the micro-canonical ensemble
of classical Hamiltonian systems. We generalize the arguments in Rugh (1997Phys. Rev. Lett.
78 772–4) and show that the energy-derivative of a micro-canonical average is itself micro-
canonically observable. In particular, temperature, specific heat and higher-order derivatives
of the entropy can be observed dynamically. We give perturbative, asymptotic formulae by
which the canonical ensemble itself can be reconstructed from micro-canonical measurements
only. Using our geometrical tools we rederive formulae by Lebowitzet al and Pearsonet al,
relating, for example, specific heat to fluctuations in the kinetic energy. We show that under
natural assumptions on the fluctuations in the kinetic energy the micro-canonical temperature is
asymptotically equivalent to the standard canonical definition using the kinetic energy.

1. Introduction

For an isolated classical Hamiltonian system the ergodic hypothesis implies that the time
average of an observable along almost any trajectory may be replaced by a space average
over a suitable subset of the phase space, typically the energy surface. Such an average
is denoted the micro-canonical ensemble average or here, for short, theµ-average. The
thermodynamic variables in this ensemble are the first integrals as well as extensive
quantities like volume and particle numbers (cf, e.g., Abraham and Marsden [1, ch 3.7]).
In the so-called thermodynamic limit of many weakly coupled systems in equilibrium one
expects each individual system to behave according to the canonical or Gibbs ensemble.
In this ensemble the free parameters [7] are the variables conjugated to (some of) the first
integrals. Quite simple statistical principles argue in favour of such an approach but rigorous
results are sparse [10]. Whereas the theory of the canonical ensemble has been elaborated
to almost perfection, making it a corner stone in modern physics, our present understanding
of theµ-ensemble and the equivalence of the two ensembles is remarkably incomplete. On
the other hand, modern computer technology makes it ever more important to understand
and give precise interpretations for dynamical measurements in theµ-ensemble [5].

Now, from a geometrical point of view theµ-ensemble is an average of smooth
quantities over a (genericly smooth) sub-manifold of phase space, fixed by the first integrals.
For the sake of clarity we restrict ourselves to the case where the energy is the only
extensive parameter. However, even then it isa priori not clear how to describe the
important role played by the variable conjugate to the energy, i.e. the inverse temperature.
If the Hamiltonian contains one or more separate terms of the form momentum squared
the canonical average of such a term yields precisely the (canonical) temperature. The
time average of such a term is, therefore, often used as a measure of the physical
temperature of the system (cf [1, example 3.7.27] or [8]). This approach, however,
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presumes both the ergodic hypothesis and the equivalence of ensembles. In [11] we used
elementary geometrical arguments to show that theµ-temperature is in fact measurable
in the µ-ensemble itself. In particular, assuming ergodicity, thus relating dynamics to
thermodynamics, we constructed explicitly an observable whose time/space average yields
the µ-temperature. In the present paper we shall carry these arguments over to a much
wider range ofµ-observables.

We establish (theorem 1) two fundamental identities that will allow us to measure
any energy derivative of aµ-averagewithin the µ-ensemble itself. Thus, not only the
temperature but also, for example, the specific heat and any higher-order derivatives of the
µ-canonical entropy can be observed dynamically.

We give two main examples to illustrate these principles. In the first we use a
perturbative expansion to show that by measuring all energy derivatives in the micro-
canonical ensemble we can in principle reconstruct the canonical ensemble, cf equations (26)
and (27). This approach is, however, based upon a Gaussian expansion which itself relies
on analyticity. On general grounds one would expect such results to be at best asymptotic,
for example in the number of degrees of freedom.

In the second example we consider the thermodynamics of particles in a box. Lebowitz
et al [8] and also Pearsonet al [9] established relations between, for example, the specific
heat and fluctuations in the kinetic energy in the micro-canonical ensemble. We rederive
these and other relations using our geometrical and micro-canonical approach. We also
show that when both the kinetic energy and the square of fluctuations in the kinetic energy
are of orderN our micro-canonical derivation of temperature is asymptotically equivalent
to the standard canonical definition of temperature which uses the average kinetic energy.
The case of relativistic particles concludes the example.

It is our hope that the reader will perceive the geometrical approach advocated here not
only as elementary from the theoretical point of view but also as providing a tool which is
easy and straightforward to apply in concrete cases. It is of interest to study what happens
for systems out of equilibrium.

2. Energy derivatives

As phase space we take a 2n-dimensional symplectic manifold(M, ω), whereω is a
non-degenerate symplectic 2-form and the Liouville volume formm = ∧nω is nowhere
vanishing. The standard example is (a subset of) Euclidean spaceM = R2n andm =
Lebesgue measure (cf example B). A Hamiltonian functionH : M → R generates [1, 2]
a vector fieldI dH and a flowgtI dH which preserves the Liouville measure as well as the
energy surface,6E = {ξ ∈ M : H(ξ) = E}. It follows ([1, ch 3.7]) that the flow also
preserves the restricted Liouville measure, formally given by

µE = mδ(H − E) (1)

at least when this is well defined. Theµ-measure of an observableφ is then given
by µE(φ) =

∫
mδ(H − E)φ and is a function of the energy. Theµ-ensemble is the

corresponding probability distribution, yielding theµ-average ofφ over the energy surface:

〈φ;E〉 = µE(φ)/µE(1). (2)

If the Hamiltonian flow is ergodic with respect to the restricted Liouville measure, then by
Birkhoff’s theorem thisµ-average equals the time average ofφ for almost any initial point
on the energy surface6E . We say that〈φ;E〉 is dynamically measurable in theµ-ensemble.
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Of particular importance is theµ-entropy and the associated (inverse) temperature:

S(E) = logµE(1)
1

T (E)
= ∂S(E)

∂E
= ∂µE(1)/∂E

µE(1)
. (3)

The energy derivative and theµ-averages are related through the following.

Theorem 1. Assume that6E is a regular energy surface (cf later) of the Hamiltonian
functionH and thatX is a vector field defined in a neighbourhood of6E satisfying

dH(X) ≡ 1. (4)

Then theµ-measure and theµ-average of an observableφ verify the identities

∂

∂E
µE(φ) = µE(div(φX)) (5)

∂

∂E
〈φ;E〉 = 〈div(φX);E〉 − 〈φ;E〉

T (E)
. (6)

In coordinates,X · ∇ = ∑
i Xi∂/∂xi, m = ρ dx1 ∧ · · · ∧ dx2n, one has the explicit

formulae

div(φX) = 1

ρ

∑
i

∂

∂xi
(ρφXi) dH(X) =

∑
i

Xi
∂H

∂xi
≡ 1. (7)

It is sufficient to verify the identity (5) since the other follows from (3) and

∂

∂E
〈φ;E〉 = ∂µE(φ)/∂E

µE(1)
− µE(φ)
µE(1)

∂µE(1)/∂E

µE(1)
. (8)

According to Khinchin [6], when a metric is given, theµ-canonical measure is
proportional to d6/‖∇H‖ where d6 is the differential area element on the energy surface.
Thus, for an observableφ we have∫

H6E
mφ =

∫ E

−∞
du
∫
H=u

d6

‖∇H‖φ. (9)

In the language of differential geometry, theµ-canonical measure can be expressed as a
differential (2n− 1)-form,

µ = iXm (10)

whereX is any vector field for which dH(X) ≡ 1 and iXm denotes the interior product
of X with the volume formm. When the energy surface is regular, which is to say that
dH does not vanish on the energy surface, one can always find such a vector field in a
neighbourhood of this energy surface. Althoughµ is not unique, its restriction to an energy
surface is unique and equivalent to the weighted area element in Khinchin’s formula. To
see this, write the area element as a vectorial quantity dΣ (in the direction of∇H ) and the
metric as a scalar product. Then, by a slight abuse of notation,

iXm =X · dΣ = dH(X)∇H · dΣ
‖∇H‖2

= d6

‖∇H‖ . (11)

The identityiX(dH ∧ iXm) ≡ dH(X)iXm = iXm and the fact thatm is of maximal degree
implies dH ∧ iXm = m. Thus,µ = iXm satisfies the relation

m = dH ∧ µ (12)
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and the volume integral splits into an energy integral and an integral over each energy
surface. The (exterior) derivative ofµφ (φ being an observable) is given by

d(µφ) = d(iXmφ) = d(iφXm) = m div(φX) (13)

where the divergence ofXφ was given by equation (7). Stokes theorem and the relation
(12) then yield∫

H=E
µφ =

∫
H6E

d(µφ) =
∫ E

−∞
du
∫
H=u

µ div(Xφ). (14)

Hence, taking a further energy derivative,

∂

∂E
µE(φ) = µE(div(φX)) (15)

as we wanted to show.

3. General remarks

• Non-uniqueness. Note that the vector fieldX is far from unique. One may add any vector
field tangent to the energy surfaces. This corresponds to a reparametrization of the surfaces
and does not change the average of div(φX). It does, however, affect fluctuations in this
observable and hence a wise choice ofX could lead to better convergence in numerical
experiments.
• Settingφ ≡ 1 it follows from (6) and〈φ;E〉 ≡ 1 that

1

T (E)
= 〈divX;E〉. (16)

Neither this formula nor those in theorem 1 make any reference to metric properties ofM.
A metric onM allows one to compute gradients of functions and this gives one natural
choice of the vector fieldX, namelyX = ∇H/‖∇H‖2. In the case of Euclidean space
and Lebesgue measure this leads to the formula 1/T (E) = 〈∇ · (∇H/‖∇H‖2);E〉 as was
found in [11].
• Iteration. Given the analytic expression for a vector fieldX and ofφ as in theorem 1
the above formulae may be iterated indefinitely. Thus, formula (6) implies that any
energy derivative of aµ-average can be measured within theµ-ensemble. In particular,
any derivative of the temperature, for example specific heat, is also measurable in the
µ-ensemble.
• Fluctuations. Using the identity div(φX) = (X·∇)φ+φ divX we may rewrite equation (6)
as follows,

∂

∂E
〈φ;E〉 = 〈(X · ∇)φ;E〉 + 〈δφ δ(divX);E〉 (17)

whereδφ = φ − 〈φ;E〉 etc. Thus, the energy derivative has a contribution coming from
the derivative ofφ in the direction ofX as well as from the product of fluctuations in the
observablesφ and divX, cf example B.
• Other ensembles. Our presentation is closely tied to the ergodic hypothesis, emphasizing
the dynamical aspects of theµ-canonical approach. Other definitions of theµ-ensemble
are possible, for example by considering the enclosed bulk volume instead of the area of
the energy surface. Such a choice seems less natural from the dynamical point of view.
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4. Example A. The canonical ensemble

As an illustration of theorem 1 we will show that the canonical ensemble can be measured
throughµ-averages. The canonical ensemble is most conveniently defined here as the
Laplace transform of theµ-ensemble [3, 4]. More precisely, the weighted partition function
is given by

Z(β, φ) =
∫
m e−βHφ =

∫
dE e−βEµE(φ). (18)

Assuming thatµE(φ) has an analytic extension inE ands is small enough we may expand
the partition function by iterating (7). It is convenient to writeDX(φ) ≡ div(φX) in terms
of which

µE+s(φ) = es∂/∂EµE(φ) = µE(esDXφ). (19)

Here the last exponential should be interpreted through its power series. Therefore, formally

Z(β, φ) =
∫

ds e−β(E+s)µE(esDXφ) (20)

where in this last expressionE has a fixed value. Dividing (normalizing) by the factor
µE(1) = eS(E) we see that all the terms in the expansion of the exponential can be measured
in the µ-ensemble. Thus, up to a constant factor the canonical partition function can in
principle be evaluated in theµ-ensemble. Of course, this approach does raise the question
about convergence. In general, one can only hope for the expansion to be asymptotic, for
example in the number of degrees of freedom in the system. To make our statements more
explicit consider the standard partition function (φ ≡ 1) and the following expansion of the
µ-entropy:

S(E) = S(E0)+
∑
k>0

(E − E0)
k

k!
sk. (21)

As a consequence of theorem 1 all the numberssk (but notS(E0)) are measurable in the
µ-canonical ensemble. We shall assume in the following thats2 is strictly negative†. We
write the partition function as

Z(β) =
∫

dE e−βE+S(E) = e−F(β). (22)

Now, letβ be close tos1 = ∂S/∂E(E0) and let0(β) be the extremal point (the conjugated
variable in the Legendre transform) of the exponent−βE + S(E). Again it is possible to
calculate0(β) perturbatively from the known quantitiessk and equation (21).0(β) satisfies
(cf also Bailyn [3, section 11.6]):

β = ∂S

∂E
(0(β)) 1= ∂2S

∂E2
(0(β))

∂0

∂β
. (23)

InsertingE = 0(β)+ z in the exponent in (22) we get

−β0(β)+ S(0(β))+ ∂2S

∂E2
(0(β))z2 1

2
+ V (z) (24)

† This corresponds to the assumption of thermodynamic stability, i.e. that the specific heat should be positive in the
µ-ensemble. At least in the thermodynamic limit there are mathematical arguments justifying such an assumption.
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whereV (z) = v3z
3/3!+ v4z

4/4!+· · · can also be calculated in terms of the coefficientssk.
As the second derivative was assumed negative, we may carry out the Gaussian integral by
standard techniques,∫

dz e(−z
2/2a)+V (z) =

∫
dz e(−z

2/2a)+z∂x eV (x)|x≡0 = C e(a/2)∂
2
x eV (x)|x≡0 (25)

to obtain the (exact) asymptotic formula

F(β) = Fcl(β)− log[e
1
2 (−∂0/∂β)(∂x)2 eV (x)|x≡0] (26)

where

Fcl(β) = constant+ β0(β)− S(0(β))− 1

2
log

(
−∂0
∂β

)
. (27)

For the sake of clarity we shall in the following neglect theV -term and use the last
expression (corresponding to the classical action in quantum field theory). Taking aβ

derivative we get for the average energy in the canonical ensemble

〈H ;β〉 = F ′cl(β) = 0(β)−
1

2

0′′(β)
0′(β)

. (28)

Differentiating once more we obtain the approximative formula for the specific heat:

c(β) = −β2∂〈H ;β〉
∂β

= −β20′
[

1− 0′′′

2(0′)2
+ (0′′)2

2(0′)3

]
. (29)

As a trivial but analytically accessible example (cf [11]) we considern harmonic oscillators
for which theµ-entropy equalsS(E) = (n− 1) logE and the extremum of−βE+ S(E) is
attained for0(β) = (n− 1)/β. We get

〈H ;β〉 = n− 1

β
− 1

2

−2(n− 1)/β3

(n− 1)/β2
= n

β
c(β) = n (30)

which happens to recover the exact canonical results.

5. Example B. Interacting particles

Our second application is concerned with the thermodynamics ofN particles in a box
of volume V in R3. We shall make use of a very particular choice of vector field (for
theorem 1) which highlights the important role the kinetic energy plays. We shall compare
exact micro-canonical computations with formulae obtained from canonical ensemble theory.
It turns out that a natural assumption on the fluctuations in the kinetic energy is sufficient
to obtain equivalence of the two approaches. These results were previously obtained by
Pearsonet al [9] and in an approximative form by Lebowitzet al [8]. Lebowitz et al
used an ingenious and quite general technique of inverting ensemble averages through an
(approximative) inversion of a Laplace transform. Their method relies, however, on unstated
analytic properties of the ensembles involved. Pearsonet al showed that when the kinetic
energy is a quadratic form in the momenta one may carry out Laplace transforms to obtain
exact formulae. Their method can be adapted to some other forms for the kinetic energy
but does not offer a general approach, cf the relativistic example below. The geometrical
approach we have presented makes no reference to the particular structure neither of the
Hamiltonian nor the phase space. It is only in the choice of the vector fieldX that such a
structure is reflected. In practical situations other choices of the vector field may well turn
out to be superior in terms of minimizing numerical fluctuations.
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The Hamiltonian is taken to be of the form

H(p, q) =
N∑
i=1

p 2
i /2+ Uint(q)+ Uext(q) (31)

with the standard symplectic structure onR6N . HereK(p) = ∑
i p

2
i /2 is the kinetic

energy,Uext =
∑N
j=1Uj(qj ) is a box confining potential andUint is an interaction potential,

for example a sum of two-body interactions.
For the vector fieldX we chooseX1 = p/2K(p) with p = (p1, . . . ,pN, 0, . . . ,0). The

reader might worry about the singularity atp = 0 but as we shall see later this singularity
is integrable when the number of particles is sufficiently large (at least two particles are
needed in the applications). Since

div(X1) =
∑
i

∂

∂pi
·
(
pi

2Kp

)
= (3N − 2)/(2K(p)) (32)

the inverse temperature is given by

1

T (E)
= 3N − 2

2
〈1/K(p);E〉. (33)

In order for this average to be well defined it is necessary that 1/K(p) is integrable at
p = 0, i.e. that

∫
1/p2 d3Np < ∞ where the integral is over a neighbourhood ofp = 0.

This is the case when 3N > 2, i.e. when the system contains at least one particle.
The inverse specific heat,

1

c
= ∂

∂E
T (E) = −T (E)2 ∂

∂E

1

T (E)

can be calculated using (6) from which(
1

T (E)
+ ∂

∂E

)
1

T (E)
=
〈
div

(
3N − 2

K
X1

)
;E
〉
= (3N − 2)(3N − 4)

4
〈1/K2;E〉 (34)

and thus
1

c(E)
= 1− (3N − 4)〈1/K2;E〉

(3N − 2)〈1/K;E〉2 . (35)

This time we need 1/K2(p) to be integrable and this happens when 3N > 4, i.e. at least
two particles should be present.

The standard definition of the (canonical) temperature is

Tc(E) = 2

3N
〈K(p);E〉. (36)

Had the average been in the canonical ensemble this would indeed yield the canonical
temperature. We have the following formula for the ratio:

Tc(E)/T (E) = 3N − 2

3N
〈K;E〉〈1/K;E〉. (37)

We may also calculate the inverse specific heat this time using the canonical temperature.
From (6) and the obvious identity div(KX1) ≡ 3N/2 we obtain

1

cc(E)
= ∂

∂E
Tc(E) = 1− Tc(E)

T (E)
. (38)

In order to compare the above formulae we shall consider the fluctuations in the kinetic
energy, defined by

K = 〈K(p);E〉 + δK. (39)
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Our assumption in the following will be that〈K〉 = 〈K(p);E〉 and(δK)2 are both of order
N . Such an assumption seems physically justified when interactions have short range and
N is large (for non-interacting particles the statement is rather trivial by the law of large
numbers but a rigorous argument in the general case is lacking). In particular, forN large
enough we assume that the singularities are integrable and that we have an expansion of
the form

1

K
= 1

〈K〉 −
δK

〈K〉2 +
(δK)2

〈K〉3 + o(N
−2). (40)

Taking the average on both sides yields〈
1

K

〉
= 1

〈K〉 +
〈(δK)2〉
〈K〉3 + o(N

−2) (41)

and similarly by squaring before taking the average:〈
1

K2

〉
= 1

〈K〉2 + 3
〈(δK)2〉
〈K〉4 + o(N

−3). (42)

Using (41) and (42) and retaining only terms to orderN−1, both (35) and (38) reduce to

1

c(E)
= 2

3N
− 〈(δK)

2;E〉
〈K;E〉 + o(N

−1). (43)

We note that the assumption onδK gives a sufficient condition for the equivalence not only
of T (E) andTc(E) (the ratio (37) differs from one by a term of orderN−1) but also for the
derived expressions for the inverse specific heat to be valid to orderN−1. Even close to
a phase transition where 1/c(E) tends to zero we would expect that our assumptions (41)
and (42) are not violated.

Next, consider theµ-canonical pressure exerted by theN particles on the walls of the
container. We may define it as the average force per surface area of the container. A
convenient expression for the pressure,P , is then obtained through the Virial theorem (see,
e.g., Becker [4, p 98] or Abraham and Marsden [1, example 3.7.32]).

Thej th particlej = 1, . . . , N having coordinatesqj is confined by the external potential
Uj(qj ). The force, dF = P dA, exerted on the surface element dA is given by the (time)
average of the external forces in a small neighbourhoodδV of that surface element, i.e.
P dA = 〈∑j ∇Uj : qj ∈ δV 〉.

This vectorial formula is transformed into a scalar quantity by taking the scalar product
with the coordinate of the volume element in question. Summing over the whole surface
removes the restriction on theqj th coordinate, thus yielding

P

∫
q · dA =

〈∑
j

qj · ∇Uj
〉

(44)

and, finally, using Stokes theorem we see that the left-hand side equals 3PV . Now, by
the Virial theorem the time average of(p∂p − q∂q)H vanishes (since it is a total time
derivative). A rearrangement of the terms then yields

PV/N = 1

3N
〈2K(p)−8;E〉 (45)

with 8 =∑N
j=1 qj · ∂Uint(q)/∂qj .

We, therefore, obtain the following derivative:

∂

∂T
(PV/N) = c(E) ∂

∂E
(PV/N) = 1− c(E)

3N

∂

∂E
〈8;E〉. (46)
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Equation (17) implies the exact formula

∂

∂T
(PV/N − T ) = c(E)3N − 2

6N
〈δ8 δ(1/K);E〉 (47)

which under the assumption above on the kinetic energy fluctuations reduces to

∂

∂T
(PV/N − T ) = 2c(E)

(3NT (E))2
〈δ8 δK;E〉 + o(1). (48)

As a final application, consider the relativistic case when the kinetic energy from above
is replaced by (in units where the speed of light is one)

K(p) =
N∑
i=1

√
m2
i + p 2

i . (49)

Again we writep = (p1, . . . ,pi , 0, . . . ,0) for which

dH(p) = dK(p) =
N∑
i=1

p 2
i√

m2
i + p 2

i

(50)

and we use the (singular) vector field,X = p/dK(p). Then

divX = 3N − 2

dK(p)
−
∑ (p 2

i )
2√

m2
i + p 2

i

3

/(
p 2
i√

m2
i + p 2

i

)2

(51)

is an observable whose average yields theµ-temperature for the relativistic gas. The
first term here has the same form as in the non-relativistic case, whereas the last gives a
relativistic correction. In the zero-mass limit we obtain

K(p) =
∑
i

|pi | = dK(p) (52)

and the observable for the temperature (the non-relativistic constant 3N − 2 turns into
3N − 3):

divX = 3N − 3

K(p)
. (53)

The approximative formulae, (43) and (48), were previously derived by Lebowitzet al
[8]. Pearsonet al [9] derived these formulae as well as their exact counterparts (33), (35)
and (47). In our approach we have emphasized the underlying geometrical structure of
the problem and constructed a very general scheme which also applies in a straightforward
manner to cases where the kinetic energy has a more complicated form as illustrated by the
relativistic example, equations (51) and (53).
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